The Firewall Transformation: neither entirely consistent nor exactly canonical!

Bernard F Whiting, with Nathaniel A Strauss

University of Florida Department of Physics

September 27, 2023

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 1/20

Outline

- What is a Firewall
- 't Hooft's proposed Firewall Transformation
- Casting it as a Canonical Transformation
- Accounting for Errors of Smallness
- Full Hamiltonian treatment
- Shifts nor really Canonical
- What can be done?

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 2/20

What is a Firewall

- Classical General Relativity suggests that nothing particularly remarkable happens in a sufficiently small neighborhood of a black hole horizon.
- Hawking radiation must lose energy as it escapes from close proximity to the black hole.
- Arbitrarily close to the black hole it must be arbitrarily energetic (even super-Planckian!).
- The original Firewall problem arises in close proximity to the black hole's future horizon.
- 't Hooft argues that Firewalls may exist at both the past horizon and the future horizon of an eternal black hole.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 3/20

't Hooft's Proposal

In any Lorentz frame, 't Hooft distinguishes between soft and hard particles.

['t Hooft, Found Phys (2018) 48:1134-1149]

- The past Firewall represents the imploding matter which originally formed the black hole.
- The future Firewall represents very late and energetic Hawking particles (far from any vacuum state).
- Together, representing very large numbers of Quantum States, the Firewalls pose an unaddressed black hole information problem.
- Proceed by assuming their complete absence (ie, "remove the firewall").

't Hooft's Proposal

We never encounter trans-Planckian particles in reality, so let's represent all pure quantum states of a black hole by allowing only soft particles in its environment.

['t Hooft, Found Phys (2018) 48:1134-1149]

• A spectator particle will appear to be dragged along after encountering a highly boosted particle:

$$
\delta u^{-} = -\frac{4G}{c^3} \delta p^{-} \log |\delta \tilde{x}|.
$$

- As gravity between soft particles is weak, standard quantum field theory and perturbative gravity apply.
- The footprints left by hard particles are themselves soft particles.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 5/20

't Hooft's Firewall Transformation

- All ingoing particles encounter and interact with all outgoing particles.
- Consider a hard particle, momentum δp^{-} , from angular direction $\Omega = (\theta, \phi)$.
- It drags a soft particle, angular direction $\Omega' = (\theta', \phi')$, by an amount δu^- .
- Generalizing the above result, δu^- is given by:

 $\delta u^{-}=\frac{8\pi G}{r^3}$ $\frac{\partial}{\partial c^3} f(\Omega', \Omega) \delta \rho^-, \quad \text{where} \quad (1 - \Delta_{\Omega}) f(\Omega', \Omega) = \delta^2(\Omega', \Omega),$

where Δ_{Ω} is the angular Laplacian.

• Summing over encounters, and "integrating", 't Hooft writes (and similarly for u^+ and p^+):

$$
u^{-}(\Omega')=\frac{8\pi G}{c^3}\int d^2\Omega f(\Omega',\Omega)p^{-}(\Omega).
$$

where u^- and p^- are now also commuting quantum operators.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 6/20

Casting 't Hooft's proposal in a Canonical Framework

't Hooft's result essentially eliminates half the degrees of freedom, since:

$$
u^{\pm} \Leftrightarrow p^{\mp}
$$
, and $[u^-, p^+] = [u^+, p^-] = i\hbar$.

Note that 't Hooft's result is given in terms of quantum operators, but it has not been obtained from a Hamiltonian framework. We will use $u^-\Rightarrow \mathcal{U}$ and $u^+\Rightarrow \mathcal{V}.$

- We work in the classical domain and develop a Hamiltonian perspective.
- We do simplify, replacing particles by null shells, with one intersection.
- We work first with the two shells. finding 't Hoofts setup inconsistent.
- Then with the full spacetime, we find his result is not canonical.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 7/20

Developing the Spacetime Framework

• Each spacetime region is part of a Schwarzschild spacetime:

$$
ds^{2} = -\left(1 - \frac{2M_{i}}{R}\right) dT_{i}^{2} + \left(1 - \frac{2M_{i}}{R}\right)^{-1} dR^{2} + R^{2} d\Omega^{2}.
$$

• Each metric can also be written in global, Kruskal coordinates:

$$
ds2 = 2g_{\mathcal{U}_i\mathcal{V}_i} d\mathcal{U}_i d\mathcal{V}_i + R2 d\Omega2, where
$$

$$
g_{\mathcal{U}_i\mathcal{V}_i} = 8M_i^2 \frac{1 - 2M_i/R}{\mathcal{U}_i\mathcal{V}_i} = \frac{16M_i^3}{R} e^{-R/2M_i}.
$$

• In each region, these are related by:

$$
\mathcal{U}_i \mathcal{V}_i = \left(\frac{R}{2M_i} - 1\right) e^{R/2M_i}, \quad \text{and} \quad \mathcal{V}_i/\mathcal{U}_i = \text{sign}\left(\frac{R}{2M_i} - 1\right) e^{T_i/2M_i}.
$$

• The energies of the shells are $E_{\text{in}} = M_1 - M_4$ and $E_{\text{out}} = M_4 - M_3$ as measured in region 4, and in region 2: $\tilde{E}_{\rm in}=M_2-M_3$ and $\tilde{E}_{\rm out}=M_1-M_2$.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 8/20

Exact results, and Errors of Smallness

- We assume: $U_{1,\text{out}} = U_{2,\text{out}}$, $U_{4,\text{out}} = U_{3,\text{out}}$, $V_{1,\text{in}} = V_{4,\text{in}}$, $V_{2,\text{in}} = V_{3,\text{in}}$.
- Exact calculation gives (see also the Dray-'t Hooft-Redmount formula below):

$$
\tilde{E}_{\rm in}-E_{\rm in}=\frac{2E_{\rm in}E_{\rm out}}{R_0-2M_4},\quad\text{and}\quad E_{\rm out}-\tilde{E}_{\rm out}=\frac{2E_{\rm in}E_{\rm out}}{R_0-2M_4},
$$

where R_0 is given by $U_{i,\text{out}}V_{i,\text{in}} = (R_0/2M_i - 1) \exp(R_0/2M_i)$.

- 't Hooft ignores the right hand sides, so he assumes $1 \gg \frac{2E_{\text{in/out}}}{R_{\text{in}}-2M}$ $\frac{2L_{\text{in}/\text{out}}}{R_0-2M_4} \sim \delta_{\text{in}/\text{out}}.$
- In his derivation, 't Hooft additionally assumes $\mathcal{U}_{i,\text{out}}$, $V_{i,\text{in}}$ are all small.
- Let $\mathcal{U}_{i,\mathsf{out}} \sim \varepsilon_\mathsf{out}$, $\mathcal{V}_{i,\mathsf{in}} \sim \varepsilon_\mathsf{in}$, then $|\mathcal{U}_\mathsf{out}\mathcal{V}_\mathsf{in}| = \Big|$ $\frac{R_0}{2M} - 1 \Big| e^{R_0/2M} \sim \varepsilon_{\text{out}} \varepsilon_{\text{in}}.$

• Then, $E_{\text{in}/\text{out}} \sim \delta_{\text{in}/\text{out}} \varepsilon_{\text{in}} \varepsilon_{\text{out}} M$ and $\tilde{E}_{\text{in}} - E_{\text{in}} = \frac{2E_{\text{in}}E_{\text{out}}}{R_{\text{0}} - 2M} \sim \delta_{\text{in}} \delta_{\text{out}} \varepsilon_{\text{in}} \varepsilon_{\text{out}} M$.

• Finally, note that $E_{\text{in}} \sim \delta_{\text{in}} \varepsilon_{\text{out}} M V_{3,\text{in}}$ and $E_{\text{out}} \sim \delta_{\text{out}} \varepsilon_{\text{in}} M U_{3,\text{out}}$.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 9/20

Inexact results, and Errors of Smallness

• Direct calculation using the Kruskal coordinate conditions now gives:

$$
\delta \mathcal{U}_{\text{out}} = \mathcal{U}_{1,\text{out}} - \mathcal{U}_{3,\text{out}} = -\frac{eE_{\text{in}}}{M \mathcal{V}_{3,\text{in}}} \left(1 + O(\varepsilon_{\text{in}} \varepsilon_{\text{out}}) \right) \sim \delta_{\text{in}} \varepsilon_{\text{out}},
$$

$$
\delta \mathcal{V}_{\text{in}} = \mathcal{V}_{1,\text{in}} - \mathcal{V}_{3,\text{in}} = -\frac{eE_{\text{out}}}{M \mathcal{U}_{3,\text{out}}} \left(1 + O(\varepsilon_{\text{in}} \varepsilon_{\text{out}}) \right) \sim \delta_{\text{out}} \varepsilon_{\text{in}},
$$

where we have dropped higher order terms in the shell energies.

- By also dropping the error terms shown, $O(\frac{r_0}{2M_i}-1)$, we thus work to third order in ε_{in} , δ_{in} , ε_{out} , $\delta_{\text{out}} \ll 1$.
- In his final step, 't Hooft assumes ingoing momenta start out at $p_{\text{in}}|_{\text{init}} = 0$, and that the outgoing particles start out on the horizon: $U_{\text{out,init}} \sim \varepsilon_{\text{out}} = 0$.
- Now taking $p_{\text{out,init}} = 0$ and $\mathcal{V}_{\text{in,init}} = 0$ would mean additionally that $\varepsilon_{\text{in}} = 0$.
- 't Hooft's treatment then appears inconsistent, as these conditions force both $\delta \mathcal{U}_{\text{out}} = 0$ and $\delta \mathcal{V}_{\text{in}} = 0$, and there is no remaining Firewall Transformation.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 10/20

Developing the Hamiltonian Framework

• For spherical symmetry, an ADM approach admits this metric decomposition:

 $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ $= -N^2 dt^2 + \Lambda^2 (dr + N^r dt)^2 + R^2 d\Omega^2$ $= -({N^2 - {\Lambda^2 N'^2}})dt^2 + 2{\Lambda^2 N' \cdot} dt dr + {\Lambda^2} dr^2 + R^2 d\Omega^2,$

where $\mathsf{N}(t,r)$ and $\mathsf{N}^r(t,r)$ are the lapse and shift, and $\mathsf{N}(t,r)$ and $\mathsf{R}(t,r)$ are the canonical variables of the metric. All are C^0 functions of r and t .

• Definition of the canonical momenta give:

$$
\dot{\Lambda} = N\left(\frac{\Lambda P_{\Lambda}}{R^2} - \frac{P_R}{R}\right) + (N^r \Lambda)', \text{ and } \dot{R} = -\frac{NP_{\Lambda}}{R} + N^r R',
$$

- For a massless shell at $r = \mathfrak{r}(t)$, we find $\dot{\mathfrak{r}} = \eta \frac{N}{\Lambda} N^r$ in terms of canonical variables, in which $\eta = \text{sign}(\mathfrak{p})$ is the sign of the momentum $\mathfrak{p}(t)$ of the shell.
- The full action can be written in Hamiltonian form as:

$$
S = \int dt \Big(\mathfrak{p}_{\mathsf{in}} \dot{\mathfrak{r}}_{\mathsf{in}} + \mathfrak{p}_{\mathsf{out}} \dot{\mathfrak{r}}_{\mathsf{out}} + \int dr (P_{\Lambda} \dot{\Lambda} + P_{R} \dot{R} - NH - N^{r} H_{r}) \Big),
$$

and Hamilton's equations of motion follow as usual.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 11/20

Exploring the Hamiltonian Framework

Note:

$$
H = \frac{\Lambda P_{\Lambda}^2}{2R^2} - \frac{P_{\Lambda}P_{R}}{R} + \frac{RR''}{\Lambda} - \frac{RR'h'}{\Lambda^2} + \frac{R'^2}{2\Lambda} - \frac{\Lambda}{2} + \frac{\eta_{\text{in}}\mathfrak{p}_{\text{in}}}{\Lambda}\delta(r - \mathfrak{r}_{\text{in}}) + \frac{\eta_{\text{out}}\mathfrak{p}_{\text{out}}}{\Lambda}\delta(r - \mathfrak{r}_{\text{out}}),
$$

$$
H_r = P_{R}R' - P'_{\Lambda}\Lambda - \mathfrak{p}_{\text{in}}\delta(r - \mathfrak{r}_{\text{in}}) - \mathfrak{p}_{\text{out}}\delta(r - \mathfrak{r}_{\text{out}}).
$$

Then:

$$
\dot{P}_{\Lambda} = \frac{1}{2} N \Big(-\frac{P_{\Lambda}^2}{R^2} - \Big(\frac{R'}{\Lambda}\Big)^2 + 1 + \frac{2\eta_{\text{in}} \mathfrak{p}_{\text{in}}}{\Lambda^2} \delta(r - \mathfrak{r}_{\text{in}}) + \frac{2\eta_{\text{out}} \mathfrak{p}_{\text{out}}}{\Lambda^2} \delta(r - \mathfrak{r}_{\text{out}}) \Big) \n- \frac{N'RR'}{\Lambda^2} + N' P'_{\Lambda}, \n\dot{P}_R = N \Big(\frac{\Lambda P_{\Lambda}^2}{R^3} - \frac{P_{\Lambda} P_R}{R^2} - \Big(\frac{R'}{\Lambda}\Big)' \Big) - \Big(\frac{N'R}{\Lambda}\Big)' + (N' P_R)', \n\dot{\mathfrak{p}} = -\mathfrak{p} \Big(\eta \frac{N}{\Lambda} - N' \Big)' \Big|_{r = \mathfrak{r}},
$$

which, along with $H = 0$ and $H^r = 0$, are the remaining Hamiltonian equations. Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 12/20

Exploring the Equations of Motion

- Off the shells, the equations of motion are the vacuum Einstein equations.
- The canonical variables Λ , R, and $r_{in/out}$ are all continuous across the shells.
- However, P_{Λ} and P_R are discontinuous across the shells.
- Then, \dot{R} and $\dot{\Lambda}$ inherit discontinuities, as do R' and Λ' .
- Defining $\Delta_{\text{in/out}} f \equiv \lim_{\epsilon \to 0+} (f(t, \mathfrak{r}_{\text{in/out}} + \epsilon) f(t, \mathfrak{r}_{\text{in/out}} \epsilon))$, we find:

$$
\begin{aligned}\n\Delta R' &= -\frac{\eta \mathfrak{p}}{R}, & \Delta_{\text{out}}(\Delta_{\text{in}} P_R) &= 0, \\
\Delta P_\Lambda &= -\frac{\mathfrak{p}}{\Lambda}, & \Delta_{\text{out}}(\Delta_{\text{in}} \Lambda') &= 0, \\
\Delta \Lambda' &= \frac{\Lambda}{N} \Delta N' - \eta \frac{\Lambda^2}{N} \Delta N'', & \Delta_{\text{out}}(\Delta_{\text{in}} R') &= 0, \\
\Delta P_R &= \eta \frac{R}{N} \Delta N' - \frac{\mathfrak{p}}{R}, & \Delta_{\text{out}}(\Delta_{\text{in}} N') &= 0, \\
\Delta_{\text{out}}(\Delta_{\text{in}} N'') &= 0, & \Delta_{\text{out}}(\Delta_{\text{in}} N'') &= 0,\n\end{aligned}
$$

and $\Delta_{\sf in} \dot {\mathfrak{p}}_{\sf in} = 0$, $\Delta_{\sf out} \dot {\mathfrak{p}}_{\sf out} = 0$, while $\Delta_{\text{out}}\dot{p}_{\text{in}}(t_0) = 2p_{\text{in}}\Delta_{\text{out}}N^{r} \Big|_{r=\tau_{\text{in/out}}(t_0)}, \ \Delta_{\text{in}}\dot{p}_{\text{out}}(t_0) = 2p_{\text{out}}\Delta_{\text{in}}N^{r} \Big|_{r=\tau_{\text{in/out}}(t_0)}.$

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 13/20

Introducing Generalized Kruskal Coordinates

- The Kruskal coordinates of slide 8 do not match at the shell intersection.
- To correct, we use the rescaling freedom to define new Kruskal coordinates:

$$
U_i = \sqrt{\frac{2M_i}{R_0}} e^{(\tau_i - R_0)/4M_i} U_i, \text{ and } V_i = \sqrt{\frac{2M_i}{R_0}} e^{-(\tau_i + R_0)/4M_i} V_i
$$

where the τ_i represent a residual shift freedom in the Schwarzschild times $\,_{i}.$ • Then, at the collision, we find:

$$
U_{\text{out}}V_{\text{in}}=1-\frac{2M}{R_0},\quad\text{and}\quad\frac{V_{\text{in}}}{U_{\text{out}}}= \mathrm{e}^{(T_{\text{0}}-\tau)/2M}
$$

in each region separately, where $T_{0,i} = T_i(t_0, \mathfrak{r}(t_0))$, at the collision.

• Assuming $U_i = U_i(r, t)$ and $V_i = V_i(r, t)$, we can calculate directly:

$$
\Delta\Big(\frac{\dot{U}}{U'}+\frac{\dot{V}}{V'}\Big)=0,\quad \Delta\Big(\frac{\dot{U}\dot{V}}{U'V'}\Big)=0,\quad \text{and}\quad \Delta\Big(M^2F\frac{U'}{U}\frac{V'}{V}\Big)=0,
$$

and also find:

$$
\dot{\mathfrak{r}}_{\mathsf{in}} = -\frac{\dot{V}_{i,\mathsf{in}}}{V'_{i,\mathsf{in}}}, \quad \text{and} \quad \dot{\mathfrak{r}}_{\mathsf{out}} = -\frac{\dot{U}_{i,\mathsf{out}}}{U'_{i,\mathsf{out}}},
$$

which imply that $V_{\text{i,in}}$ and $U_{\text{i,out}}$ are constant along their respective shells. Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 14/20

Using Generalized Eddington-Finkelstein Coordinates

• From an Edington-Finkelstein-like embedding we additionally find:

$$
\Delta_{\text{in}}\left(M\frac{V'}{V}\right) = 0 = \Delta_{\text{out}}\left(M\frac{U'}{U}\right).
$$

• Then we can show:

$$
\Delta_{\rm in} R' = -\frac{4M}{R} \frac{\hat{V}'}{\hat{V}} \Delta_{\rm in} M \qquad \Longrightarrow \qquad \qquad \mathfrak{p}_{\rm in} = \eta_{\rm in} \frac{4MV'_{\rm in}}{V_{\rm in}} \Delta_{\rm in} M,
$$
\n
$$
\Delta_{\rm out} R' = -\frac{4M}{R} \frac{\hat{U}'}{\hat{U}} \Delta_{\rm out} M \qquad \Longrightarrow \qquad \qquad \mathfrak{p}_{\rm out} = \eta_{\rm out} \frac{4MU'_{\rm out}}{U_{\rm out}} \Delta_{\rm out} M.
$$

- Shell momenta are now directly related to their energies.
- We can combine with earlier results to now obtain:

$$
\Delta_{\text{out}}\Big(MF\frac{V'}{V}\Big)=0=\Delta_{\text{in}}\Big(MF\frac{U'}{U}\Big).
$$

• Consistency then implies the Dray-'t Hooft-Redmount result:

$$
\Big(1-\frac{2M_1}{R_0}\Big)\Big(1-\frac{2M_3}{R_0}\Big)=\Big(1-\frac{2M_2}{R_0}\Big)\Big(1-\frac{2M_4}{R_0}\Big).
$$

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 15/20

The ADM analogue of the Firewall Transformation

• The Dray-'t Hooft-Redmount result also implies:

$$
\frac{E_{\text{in}}}{1-2M_4/R_0} = \frac{\tilde{E}_{\text{in}}}{1-2M_3/R_0}, \quad \frac{E_{\text{in}}}{1-2M_1/R_0} = \frac{\tilde{E}_{\text{in}}}{1-2M_2/R_0},
$$
\n
$$
\frac{E_{\text{out}}}{1-2M_4/R_0} = \frac{\tilde{E}_{\text{out}}}{1-2M_1/R_0}, \quad \frac{E_{\text{out}}}{1-2M_3/R_0} = \frac{\tilde{E}_{\text{out}}}{1-2M_2/R_0}.
$$

• We can also show:

$$
V_{1,in} - V_{2,in} = -\frac{1}{2M_1R_0} \frac{\eta_{\text{out}} \mathfrak{p}_{\text{out}}}{U'_{1,\text{out}}},
$$

\n
$$
= -\frac{1}{2M_1R_0} \frac{\eta_{\text{out}} \mathfrak{p}_{\text{out}}}{U'_{1,\text{out}}},
$$

\n
$$
= -\frac{1}{2M_4R_0} \frac{\eta_{\text{out}} \mathfrak{p}_{\text{out}}}{U'_{4,\text{out}}},
$$

\n
$$
= -\frac{1}{2M_2R_0} \frac{\eta_{\text{in}} \mathfrak{p}_{\text{in}}}{V'_{2,\text{in}}}.
$$

\n
$$
= -\frac{1}{2M_2R_0} \frac{\eta_{\text{in}} \mathfrak{p}_{\text{in}}}{V'_{2,\text{in}}}.
$$

- These ADM analogues of 't Hooft's Firewall Transformation are exact.
- The LHS are in terms of Kruskal, not embedded shell, coordinates.
- They are not canonical, so they are not really suitable to be quantized.
- Note: $U_{i,\text{out}}$, $V_{i,\text{in}}$, $\mathfrak{p}_{\text{out}}/U'_{i,\text{out}}$, and $\mathfrak{p}_{\text{in}}/V'_{i,\text{in}}$ are all constants of the motion. Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 16/20

What we have done so far

Our primary results are

- The various $\Delta_{\text{out}}(\Delta_{\text{in}}(X)) = 0$ equations.
- The $\Delta(\mathfrak{p})$ equations for the shell's momenta.
- The several consequences of the Dray-'t Hooft-Redmount formula, as used in constructing the classical analogue of the Firewall Transformations.
- The exact shift equations on the previous slide, which are completely coordinate independent, and completely free of approximation.
- We have provided a general framework suitable for investigating canonical quantization.
- We have kept the radial coordinate r of the foliation completely arbitrary.
- Seen that quantization of shells/particles described by different spacetime coordinates will result in different quantum theories.

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 17/20

Restricted Shell Hamiltonian

We use hybrid coordinates, with the Schwarzschild time T as the time coordinate t, and the Kruskal coordinates U or U as the foliation radial coordinate r.

• The metrics are:

$$
ds2 = 2e-T/2MgUV(dV2 - \frac{V}{2M}dTdV) + R2d\Omega2
$$

= 2e^{T/2M}g_{UV}(dU² + \frac{U}{2M}dTdU) + R²d\Omega².

So:

Then:

$$
\mathcal{H}_{\mathcal{V}} = \mathfrak{p} \left(\eta \frac{\hat{N}}{\hat{\Lambda}} - \hat{N}^{r} \right) \qquad \mathcal{H}_{\mathcal{U} \text{in}} = -\frac{1}{2M} \mathfrak{p}_{\mathcal{U} \text{in}} \mathfrak{r}_{\mathcal{U}_{\text{in}}} ,
$$
\n
$$
= \frac{1}{2M} \frac{\eta \varepsilon + 1}{2} \mathfrak{p} \hat{V} , \qquad \mathcal{H}_{\mathcal{V} \text{in}} = 0 ,
$$
\n
$$
\mathcal{H}_{\mathcal{U}} = \mathfrak{p} \left(\eta \frac{\hat{N}}{\hat{\Lambda}} - \hat{N}^{r} \right) \qquad \mathcal{H}_{\mathcal{U} \text{out}} = 0 ,
$$
\n
$$
= \frac{1}{2M} \frac{\eta \varepsilon - 1}{2} \mathfrak{p} \hat{\mathcal{U}} , \qquad \mathcal{H}_{\mathcal{V} \text{out}} = \frac{1}{2M} \mathfrak{p}_{\mathcal{V} \text{out}} \mathfrak{r}_{\mathcal{V}_{\text{out}}} .
$$

where $\hat{X} = X(r = \tau)$, and ε is the sign of \hat{U} or \hat{V} .

Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 18/20

The Firewall Transformation as a canonical transformation

• Note that:

$$
\mathcal{H}_c(\mathcal{U}_{\text{in}}, p_{\mathcal{U}_{\text{in}}}, \mathcal{V}_{\text{out}}, p_{\mathcal{V}_{\text{out}}}) = \frac{p_{\mathcal{V}_{\text{out}}} \mathcal{V}_{\text{out}}}{2M} - \frac{p_{\mathcal{U}_{\text{in}}} \mathcal{U}_{\text{in}}}{2M}, \text{ while}
$$

$$
\mathcal{H}_c(\mathcal{U}_{\text{out}}, p_{\mathcal{U}_{\text{out}}}, \mathcal{V}_{\text{in}}, p_{\mathcal{V}_{\text{in}}}) = 0,
$$

since, in the latter case, all canonical shell variables are constant.

• Confining ourselves to 't Hooft's (near horizon) firewall formulation, we find:

$$
U_{2,\text{out}} = U_{4,\text{out}} + \frac{e}{4M_4^2} p_{4,\text{Pin}},
$$

\n
$$
U_{2,\text{in}} = V_{4,\text{in}} + \frac{e}{4M_4^2} p_{4,\text{Uout}},
$$

\n
$$
U_{1,\text{out}} = U_{3,\text{out}} + \frac{e}{4M_3^2} p_{1,\text{Pin}},
$$

\n
$$
V_{2,\text{in}} = V_{4,\text{in}} + \frac{e}{4M_4^2} p_{4,\text{Uout}},
$$

\n
$$
p_{U_{4,\text{out}}} = p_{U_{4,\text{out}}},
$$

\n
$$
p_{U_{1,\text{out}}} = p_{U_{3,\text{out}}},
$$

\n
$$
p_{U_{3,\text{in}}} = p_{V_{4,\text{in}}},
$$

\n
$$
p_{U_{3,\text{in}}} = p_{V_{4,\text{in}}},
$$

\n
$$
p_{U_{3,\text{in}}} = p_{V_{4,\text{in}}},
$$

are both canonical transformations, in which the new variables are now continuous with their counterparts at the shell intersection.

• These transformations each serve different roles in 't Hooft's framework. Chris Fest, Cook's Branch, Montgomery County, TX September 26-29, 2023 Bernard F Whiting 19/20

What can be done

- Careful analysis of 't Hooft's work will help throw more light on what he proposes.
- Keeping shells off their respective horizons prevents the Firewall Transformation from becoming degenerate.
- A canonical transformation provides a clear way of interpreting the Firewall Transformation.
- The distinction between hard and soft particles warrants further analysis.
- Quantization of our results may confirm the Firewall Transformation, or it may offer a meaningful alternative.
- An alternative analysis could determine if the quantum Firewall Transformation will resolve the black hole information paradox.